Eric Simo, Editeur

MATHÉMATIQUES Probatoire – Sujets Corrigés

Jean-Pierre Kengne, Emmanuel Simo

Avec 13 schémas d'illustration et 15 exercices corrigés

Eric Simo, Msc.-Ing. TU-BS (Editeur) An den Äckern 2 31224 Peine Allemagne kuateric@gmail.com

Mathématiques Premières D, TI. Nouvelle Edition

Auteurs: Jean-Pierre Kengne, Maître Es Sciences; Emmanuel Simo, Maître Es Sciences (Cameroun)

Contributions: E. S. (Allemagne); F. W., J. T. (Cameroun); E. A. F. (Italie, R-U); T. v. P. (Pays-Bas); A. Z., L. S., I. D. (Ukraine); D. R., P. B. (Italie); M. B. (Zimbabwe); F. K. (Pakistan); A. K. (Russie); R. K. (Maroc)

Conception graphique des couvertures; R. A. (Bangladesh)
Thème artistique des couvertures 2017: Intelligence Artificielle

ISBN 978-3-947242-06-1 • Maison d'Edition SIMO • Bandjoun Brunswick Belfast Rotterdam • 2017

Sous réserve des exceptions légales, toute représentation ou reproduction intégrale ou partielle, faite, par quelque procédé que ce soit sans le consentement de l'auteur ou de ses ayants droit, est illicite et constitue une contrefaçon sanctionnée par le Code de la Propriété Intellectuelle. En cas d'utilisation aux fins de vente, de location, de publicité ou de promotion, l'accord de l'auteur ou des ayants droit est nécessaire.

Site Internet: www.simo.education

Avant-propos

Vous avez choisi ce livre parce que vous avez un objectif à atteindre. C'est un instrument réellement utile et efficace pour aider les apprenants des classes de premières scientifiques et techniques, quel que soit leur niveau, à améliorer leurs performances en mathématiques.

Inspirée de la pédagogie nouvelle, la conception de ce livre se fonde sur deux outils à savoir : le *cours* et les *exercices corrigés*.

Le cours a été conçu selon le projet pédagogique suivant :

- Une présentation claire parfaitement lisible qui permet de faciliter le travail de l'apprenant.
- Un cours bien structuré allant à l'essentiel. Conforme aux contenus du programme, ce cours prépare aux compétences exigibles, mais en se limitant strictement aux notions qui doivent être étudiées. Nous l'avons donc voulu bref.

Les exercices résolus et commentés, soutenus par des *méthodes de résolution* permettent à l'apprenant d'acquérir l'esprit scientifique et les principaux modes de raisonnement qu'il devra savoir développer. C'est une bonne façon d'aborder les nombreux exercices de chaque chapitre. Dans le souci d'efficacité qui a fait le succès de cette édition, nous attirons votre attention dans les solutions proposées, sur la schématisation, la représentation graphique, le choix des notations, la conduite littérale et enfin l'application numérique.

Notons cependant qu'il ne sert à rien de lire à priori la solution d'un exercice, mais qu'il faut chercher cette solution après avoir lu l'énoncé en entier et ne consulter la solution proposée dans le livre que pour contrôler son propre résultat ou en cas d'hésitation.

Nous formons le vœu que cet ouvrage constitue un outil efficace pour les apprenants des classes de premières scientifiques et techniques et qu'il apporte à nos collègues professeurs l'aide qu'ils sont en droit d'attendre. Nous attendons avec plaisir toutes les remarques et suggestions.

Table des matières

1	Sujets d'examen – Probatoire Mathématiques – Séries D, Tl	1
1.1	Enoncé des sujets d'examen	2
1.1.1	Enoncé – Probatoire 2012	2
1.1.2	Enoncé – Probatoire 2013	2
1.1.3	Enoncé – Probatoire 2014	3
1.1.4	Enoncé – Probatoire 2015	4
1.1.5	Enoncé – Probatoire 2016	5
1.1.6	Enoncé – Probatoire 2017	6
1.2	Solution des sujets d'examen	7
1.2.1	Solution – Probatoire 2012	7
1.2.2	Solution – Probatoire 2013	9
1.2.3	Solution – Probatoire 2014	12
1.2.4	Solution – Probatoire 2015	15
1.2.5	Solution – Probatoire 2016	18
1.2.6	Solution – Probatoire 2017	21

Sujets d'examen - Probatoire Mathématiques - Séries D, TI

1.1	Enoncé des sujets d'examen	2
1.1.1	Enoncé – Probatoire 2012	2
1.1.2	Enoncé – Probatoire 2013	2
1.1.3	Enoncé – Probatoire 2014	3
1.1.4	Enoncé – Probatoire 2015	4
1.1.5	Enoncé – Probatoire 2016	5
1.1.6	Enoncé – Probatoire 2017	6
1.2	Solution des sujets d'examen	7
1.2.1	Solution – Probatoire 2012	7
1.2.2	Solution – Probatoire 2013	9
1.2.3	Solution – Probatoire 2014	12
1.2.4	Solution – Probatoire 2015	15
1.2.5	Solution – Probatoire 2016	18
1.2.6	Solution - Probatoire 2017	21

1.1 Enoncé des sujets d'examen

1.1.1 Enoncé – Probatoire 2012

Examen:	Probatoire	Séries:	D, TI
Session:	2012	Durée:	3 heures
Épreuve:	Mathématiques	Coef.:	4

Exercice 1.

On considère l'expression P(x) suivante :

$$P(x) = \cos 4x - 5\cos 2x - 6$$

dans laquelle x est un nombre réel qui appartient à l'intervalle $[-\pi,\pi]$.

- **1.1.** Exprimer P(x) en fonction de $\cos 2x$ seulement.
- **1.2.** Résoudre alors dans $]-\pi,\pi]$, l'équation

$$2\cos^2 2x - 5\cos 2x - 7 = 0$$

1.3. Placer les solutions sur le cercle trigonométrique.

Exercice 2.

Classes	[15,20[[20, 25[[25,30[[30, 35[[35,40[Tota
Effectifs	40		30	20		
Effectifs cumulés croissants		80				
Effectifs cumulés décroissants				-18	10	

- **2.1.** Recopier et compléter le tableau.
- **2.2.** Construire sur un même graphique le diagramme des effectifs cumulés croissants, et celui des effectifs cumulés décroissants.
- **2.3.** En déduire une valeur approchée de la médiane de cette statistique.

Exercice 3.

Problème

Le plan est muni d'un repère orthonormé $(0, \vec{l}, \vec{j})$ (unité : 1 cm sur les axes)

3.1. Partie A

On considère la fonction f de la variable numérique x définie par

$$f(x) = \frac{2x^2 + 5x}{2(x+1)}$$

- (C) sa courbe représentative dans le plan et D_f son ensemble de définition.
- **3.1.1.** Déterminer D_f .
- **3.1.2.** Déterminer les réels a, b et c tels que pour tout

x élément de D_f

$$f(x) = ax + b + \frac{c}{x+1}$$

- **3.1.3.** Justifier que f est dérivable pour tout élément de D_f et calculer f'(x)
- **3.1.4.** Déterminer les limites de f aux bornes de D_f .
- **3.1.5.** Montrer que la droite d'équation $y = x + \frac{3}{2}$ est asymptote oblique à (C)
- **3.1.6.** Dresser le tableau de variation de f.
- **3.1.7.** Montrer que le point $\left(-1; \frac{1}{2}\right)$ est centre de symétrie de (C).
- **3.1.8.** Déterminer une équation cartésienne de la tangente (T) à (C) au point d'abscisse 0.
- **3.1.9.** Tracer (C) et (T)

3.2. Partie B

On considère le point A(1;-1) et la droite (D) passant par B(-4;0) et de vecteur directeur $\vec{v}(1;1)$. (C') est le cercle de centre A et tangente à la droite (D).

3.2.1. Donner une équation cartésienne de (D).

Dans le même repère orthonormé (O, \vec{l}, \vec{j}) placer les points A et B, puis tracer la droite (D) et le cercle (C').

- **3.2.2.** On considère le point H(-2;2); montrer que (AH) est perpendiculaire à (D)
- **3.2.3.** Vérifier que H appartient à (D)

En déduire une équation cartésienne et le rayon du cercle (C').

1.1.2 Enoncé – Probatoire 2013

Examen:	Probatoire	Séries:	D, TI
Session:	2013	Durée:	3 heures
Épreuve:	Mathématiques	Coef.:	4

Exercice 4.

Les êtres humains sont repartis suivant la composition du sang, en quatre groupes : O, A, B et AB.

Dans une assemblée de dix donneurs de sang, quatre personnes appartiennent au groupe O, trois personnes au groupe A, deux personnes au groupe B et une personne au groupe AB. On choisit au hasard et simultanément trois personnes de cette assemblée. Déterminer:

- **4.1.** Le nombre de choix possibles.
- **4.2.** Le nombre de choix où les trois personnes appartiennent au même groupe sanguin.
- **4.3.** Le nombre de choix où deux personnes au moins appartiennent au même groupe sanguin.

Exercice 5.

 (u_n) est la suite numérique définie par :

$$\begin{cases} u_0 = 1 \\ u_{n+1} = -\frac{1}{2} u_n + 1 \end{cases}$$

•

- **5.1.** Calculer u_1 , u_2 et u_3 . On donnera les résultats sous la forme de fractions irréductibles.
- **5.2. 5.2.1.** Déterminer la fonction h telle que, pour tout entier naturel n, $u_{n+1} = h(u_n)$.
- **5.2.2.** Représenter dans le plan rapporté à un repère orthonormé, les cinq premiers termes de (u_n) sur l'axe des abscisse
- **5.3. 5.3.1.** Prouver que la suite numérique (v_n) définie pour tout entier naturel n par : $v_n = u_n 1$ est une suite géométrique dont on déterminera la raison et le premier torme.
- **5.3.2.** Exprimer v_n , puis u_n en fonction de n.

Exercice 6.

Problème

6.1. Partie A

Le plan est muni d'un repère orthonormé (O, \vec{t}, \vec{j}) . On considère la fonction rationnelle f définie par $f(x) = x + 1 + \frac{1}{x}$ et (C_f) sa courbe représentative dans le plan.

- **6.1.1. 6.1.1.1.** Étudier les variations de f et dresser son tableau de variations.
- **6.1.1.2.** Préciser les asymptotes à la courbe (C_f) de f.
- **6.1.1.3.** Démontrer que le point I(0,1) est le centre de symétrie de la courbe (C_f) .
- **6.1.2.** Construire la courbe (C_f)
- **6.1.3.** Soit g la fonction numérique de la variable réelle x définie par g(x) = f(|x|) et (C_g) sa courbe représentative.
- **6.1.3.1.** Montrer que la fonction g est paire.
- **6.1.3.2.** Donner un programme de construction de la courbe (C_g) à partir de la courbe (C_f) .
- **6.1.3.3.** Tracer alors (C_g) dans le même repère de (C_f) .

6.2. Partie B

- On désigne par A(1;3); B(-1;3) et C(-1;-1) trois points dans le repère (O, \vec{i}, \vec{j})
- **6.2.1.** Quelle est la nature du triangle ABC?
- **6.2.2.** Calculer $\cos ACB$; $\cos BAC$.
- En déduire les valeurs approchées en degré de \overline{ACB} et \overline{BAC} .
- **6.2.3.** Trouver l'ensemble (E) des points M du plan tels que : $MA^2 + MB^2 = 20$

1.1.3 Enoncé - Probatoire 2014

Examen:	Probatoire	Séries:	D, TI
Session:	2014	Durée:	3 heures
Épreuve:	Mathématiques	Coef.:	4

Exercice 7.

ABC est un triangle isocèle de sommet C tel que AB = 6 cm et AC = 4 cm.

7.1. Déterminer et construire le point *G* barycentre des

points pondérés (A;3), (B;2) et (C;-1).

7.2. Soit h la transformation du plan qui à tout point M associe le point M' tel que :

$$\vec{MM'} = 3\vec{MA} + 2\vec{MB} - \vec{MC}$$

- **7.2.1.** Démontrer que $\overrightarrow{GM'} = -3\overrightarrow{GM'}$.
- **7.2.2.** En déduire la nature et les éléments caractéristiques de h.
- **7.3.** Soit (Γ) l'ensemble des points M du plan tels que : $MA^2 + MB^2 = 26$.
- **7.3.1.** Déterminer et construire (Γ).
- **7.3.2.** Construire l'image (Γ') de (Γ) par h.

Exercice 8.

8.1. Partie A

8.1.1. Montrer que pour tout $\in \mathbb{R}$

$$2\cos\left(x-\frac{\pi}{3}\right) = \cos x + \sqrt{3}\sin x$$

8.1.2. Résoudre dans \mathbb{R} , puis dans $[0,2\pi[$ l'équation :

$$\cos x + \sqrt{3}\sin x = \sqrt{2}$$

8.1.3. Représenter les images des solutions sur le cercle trigonométrique.

8.2. Partie B

Un GIC d'un village comporte 80 membres repartis en trois catégories selon le tableau suivant :

	Jeunes	Hommes mariés	Femmes mariées
Nombre	42	26	12

On désire former un bureau composé d'un président, d'un commissaire aux comptes et d'un censeur.

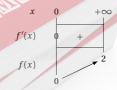
8.2.1. Combien de bureaux différents peut-on former? **8.2.2.** Combien de bureaux ne comportant pas de jeunes peut-on former?

Exercice 9.

Problème

9.1. Partie A

Le plan est muni d'un repère orthonormé direct (O, \vec{i}, \vec{j}) . Le tableau ci-dessous est une partie du tableau de variations d'une fonction paire f de courbe représentative (C)



- **9.1.1.** Donner le domaine de définition D_f de f.
- **9.1.2. 9.1.2.1.** Déterminer les limites de f aux bornes de son domaine de définition.
- **9.1.2.2.** Quels sont l'asymptote et l'élément de symétrie de (C)?

9.1.4. Recopier et compléter le tableau de variation cidessus

9.1.5. Construire la courbe (*C*). (unité sur les axes 2 cm)

9.1.6. On admet que $f(x) = \frac{ax^2 + b}{x^2 + 1}$ où a et b sont des réels. Détermine a et b.

9.1.7. Pour x élément de D_f , on pose h(x) = -f(x). Déduire de (C) la courbe (Γ) de h.

9.2. Partie B

On donne

$$g(x) = \frac{2x^2}{x^2 + 1}$$

Soit (U_n) , $n \in \mathbb{N}$ la suite définie par :

$$\begin{cases} U_0 = 0 \\ U_n = g(n) \end{cases}$$

9.2.1. Démontrer que pour tout entier naturel $n, U_n \ge 0$.

9.2.2. Montrer que la suite (U_n) est croissante.

9.2.3. Étudier le signe de U_n –2 et en déduire que la suite (U_n) est majorée.

9.2.4. Montrer que la suite (U_n) est convergente et calculer sa limite.

1.1.4 Enoncé – Probatoire 2015

Examen:	Probatoire	Séries:	D, TI
Session:	2015	Durée:	3 heures
Épreuve:	Mathématiques	Coef.:	4

Exercice 10.

Les 200 ouvriers d'une entreprise sont repartis suivant leurs salaires journaliers exprimés en millier de francs. 10.1. Recopier et compléter le tableau ci-dessous

Salaire	[1,2[[2,3[[3,5[[5,8[
Effectifs	34			
Eff cum croissant		110		200
Centre de classe			4	

10.2. Déterminer le mode de cette série et le salaire journalier moyen.

10.3. Calculer sous forme de fraction irréductible la valeur exacte de la médiane de cette série.

 ${f 10.4.}$ Estimer le nombre d'ouvriers ayant un salaire inférieur à ${f 4500\,F}$

Exercice 11.

Issa et Pierre disposant chacun d'une somme de $300\,000\,\mathrm{FCFA}$, ont un projet, d'acheter, chacun un moto qui côte $390\,000\,\mathrm{FCFA}$. Un établissement de microfinance leur propose deux types d'épargne pour les aider à pouvoir acheter leur moto. Le premier type d'épargne permet au capital d'augmenter de $7\,\%$ chaque année. Le second permet au capital d'augmenter de $21\,000\,\mathrm{FCFA}$ chaque année. Issa choisit le premier type d'épargne et Pierre le second le $1\,^{\mathrm{erj}}$ janvier $2010.\,\mathrm{On}$ désigne par u_n et v_n les capitaux de Issa et Pierre en l'an $2010+n.\,\mathrm{On}$ pose $u_0=v_0=300\,000.$

11.1. 11.1.1. Calculer le capital de Issa au 1 ^{er}janvier 2011.

11.1.2. Montrer que $u_{n+1} = 1,07u_n$ pour tout n de \mathbb{N}

11.1.3. En déduire la nature de la suite (u_n) .

11.1.4. Exprimer en fonction de n le capital de Issa au 1 $^{\mathrm{er}}$ janvier de l'an 2010 + n.

11.2. 11.2.1. Calculer le capital de Pierre au premier janvier 2011.

11.2.2. Exprimer v_{n+1} en fonction v_n pour tout n de \mathbb{N} .

11.2.3. En déduire la nature de la suite (v_n) .

11.2.4. Exprimer en fonction de n le capital de Pierre au premier janvier de l'an 2010 + n.

11.3. 11.3.1. Déterminer u_3 et u_4 .

11.3.2. En déduire à partir de quelle année Issa pourrat-il acheter sa moto?

11.4. A partir de quelle année Pierre pourra-t-il acheter sa moto?

Exercice 12.

Problème

12.1. Partie A

12.1.1. Développer $(\sqrt{3}-1)^2$.

12.1.2. Résoudre dans ℝ l'équation

$$2x^2 - (\sqrt{3} + 1)x + \frac{\sqrt{3}}{2} = 0$$

12.1.3. En déduire dans \mathbb{R} , puis dans $[0,2\pi[$ l'ensemble solution de l'équation :

$$2\cos^2 x - \left(\sqrt{3} + 1\right)\cos x + \frac{\sqrt{3}}{2} = 0$$

12.2. Partie B

Le plan est muni du repère $(O; \vec{i}, \vec{j})$. Soient A(1,-4), B(9,-4) et C(1,2) trois points du plan. Soit I le milieu du segment [BC] et G l'isobarycentre des points A, B et C.

12.2.1. 12.2.1.1. Déterminer les coordonnées de G.

12.2.1.2. Que représente G pour le triangle ABC.

12.2.1.3. Calculer les distances *AB*, *AC* et *BC*. En déduire que le triangle *ABC* est rectangle en *A*.

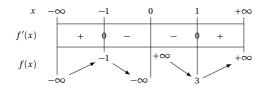
12.2.2. 12.2.2.1. Déterminer et construire l'ensemble (C) des points M du plan tels que $MB^2 + MC^2 = 100$.

12.2.2.2. En déduire une représentation paramétrique de(C).

12.3. Partie C

On considère la fonction f numérique de variable réelle, de courbe représentative (C_f) dans un repère orthonormé $(O; \vec{l}, \vec{j})$. Le tableau de variation de f est le sui-

vant:



12.3.1. Par lecture du tableau de variation ci-dessus; déterminer:

12.3.1.1. L'ensemble de définition D_f de f.

12.3.1.2. Les limites de f aux bornes de D_f .

12.3.1.3. f(-1); f(1); f'(-1) et f'(1).

12.3.2. On suppose que

$$f(x) = ax + b + \frac{c}{x}$$
 pour tout $x \neq 0$

où a, b et c sont trois réels.

12.3.2.1. En utilisant les résultats précédents, montrer que

$$f(x) = \frac{x^2 + x + 1}{x} \quad \text{pour tout } x \neq 0$$

12.3.2.2. Montrer que la droite (*D*) d'équation y = x + 1est asymptote oblique à la courbe (C_f).

12.3.2.3. Montrer que le point $\Omega(0,1)$ est centre de symétrie à courbe (C_f).

12.3.2.4. Construire avec soin (C_f) et (D) dans le même repère orthonormé $(O; \vec{i}, \vec{j})$. Unités sur les axes : 1 cm.

Enoncé – Probatoire 2016 1.1.5

Examen:	Probatoire	Séries:	D, TI
Session:	2016	Durée:	3 heures
Épreuve:	Mathématiques	Coef.:	74
1 600	a limited		

Exercice 13.

Dans une classe de première D comptant 90 élèves dont 60 garçons, une enquête est menée sur la distance hebdomadaire en km parcourue par chaque élève pour se rendre au Lycée. Le résultat est consigné dans le tableau complet ci-dessous:

Distances	[0,3[[3,5[[5,7[[7,11[
Effectifs	25	23	32	10

13.1. Déterminer l'arrondi d'ordre 2 de la moyenne des distances hebdomadaires parcourues par ces élèves.

13.2. Déterminer la classe modale de cette série statistique.

13.3. Dresser le tableau des effectifs cumulés croissants. 13.4. Déterminer par interpolation linéaire, la médiane de cette série statistique.

13.5. Déterminer le nombre d'élèves qui parcourent moins de 5 km par semaine.

13.6. En vue de mieux préparer les élèves au probatoire série D, le professeur titulaire de cette classe voudrait constituer des groupes d'étude de cinq élèves. Pour chacune des deux questions suivantes, quatre réponses sont proposées parmi lesquelles une seule est juste. Écrire le numéro de la question suivi de la lettre correspondant à la réponse juste sur votre feuille de composition. Aucune justification n'est demandée.

13.6.1. Le nombre de groupes possibles qu'il peut former est:

 \Box a. 90⁵

□ b. A_{90}^5 □ c. C_{90}^5

□ d. 5!

13.6.2. Le nombre de groupes qu'il peut former contenant au moins deux filles et au moins deux garçons est :

□ a. $C_{60}^2 \times C_{30}^3$ □ b. $C_{60}^3 \times C_{30}^2$ □ c. $A_{60}^2 \times A_{30}^3$ □ d. $C_{60}^3 \times C_{30}^2 + C_{60}^2 \times C_{30}^3$

Exercice 14.

ABCD est un carré de sens direct de centre O et de côté 3 cm. On note r la rotation de centre O et d'angle de me-

14.1. Déterminer les images des points A, B, C, D et Opar la rotation r.

14.2. Construis le point E tel que AEB soit un triangle équilatéral de sens direct.

14.3. On note G le barycentre des points pondérés (A,2); (B,1) et (E,1) et I le milieu du segment [BE]:

14.3.1. Montrer que le point G est le milieu du segment [AI].

14.3.2. Montrer que $AI^2 = \frac{27}{4}$. 14.3.3. (τ) est l'ensemble des points M du plan tel que $AM^2 + IM^2 = \frac{27}{4}$. 14.3.3.1. Montrer que pour tout point M du plan on a :

 $AM^2 + IM^2 = 2GM^2 + \frac{AI^2}{2}$

14.3.3.2. Déterminer et construire l'ensemble (τ) .

Exercice 15.

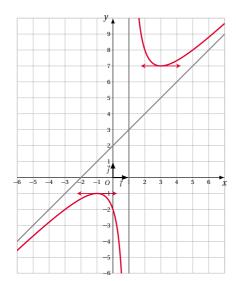
Problème

Le problème comporte deux parties 1 et 2.

15.1. Partie A

La courbe (τ) , ci-contre est la représentation graphique d'une fonction numérique f dans un repère orthonormé

15.1.1. Par lecture graphique:



15.1.1. Déterminer l'ensemble de définition Df de f ainsi les limites en $-\infty$, $+\infty$, 1^- et en 1^+ .

15.1.1.2. Préciser le sens de variation de f.

15.1.1.3. Résoudre dans *IR*, les inéquations :

$$f(x) < 0; f(x) > 0.$$

15.1.1.4. Déterminer f(-1); f(0); f'(-1) où f' est la fonction dérivée de f.

15.1.1.5. Dresser le tableau de variation de f.

15.1.2. On suppose que pour tout réel $x \neq 1$, $f(x) = ax + b + \frac{c}{x-1}$ où a, b et c sont 3 réels.

15.1.2.1. En utilisant la question (**15.1.1.4.**), montrer que les réels *a*, *b* et *c* vérifient le système :

$$\begin{cases} 2a-2b+c=2\\ b-c=-2\\ 4a-c=0 \end{cases}$$

15.1.2.2. Choisir la lettre correspondant à la bonne réponse : Le triplet (a, b, c) est égal à :

 \Box a. (-2,1,8)

 \Box b. (-2, -4, -2)

□ c. (1,2,4)

☐ d. (0,−1,0) 15.2. Partie B

15.2.1. On considère la suite (w_n) définie par, $w_{n+1} = b(c)^n + bn + a$. Pour tout $n \in IN$, on pose $u_n = b(c)^n$ et $v_n = bn + a$ où a, b et c sont les réels de la partie **15.1.2.**.

15.2.1.1. Montrer que (u_n) est une suite géométrique et (v_n) une suite arithmétique.

15.2.1.2. Montrer que pour tout entier naturel n, $w_{n+1} = 2^{2n+1} + 2n + 1$.

15.2.1.3. On pose $S_n = u_0 + u_1 + ... + u_n$; $S'_n = v_0 + v_1 + ... + v_n$ et $T_n = w_0 + w_1 + ... + w_n$.

15.2.1.3.1. Exprimer S_n puis S'_n fonction de n.

15.2.1.3.2. En déduire T_n en fonction de n.

15.2.2. 15.2.2.1. Vérifier que a est une solution de l'équation:

$$2x^2-(2-\sqrt{2})x-\sqrt{2}=0$$
.

15.2.2.2. En utilisant la somme des solutions de cette équation, montrer que l'autre solution est $-\frac{\sqrt{2}}{2}$ et en déduire dans l'intervalle $\left]-\pi,\pi\right]$ l'ensemble solutions de l'équation :

$$2\sin^2 x - (2 - \sqrt{2})\sin x - \sqrt{2} = 0$$

1.1.6 Enoncé – Probatoire 2017

Examen:	Probatoire	Séries:	D, TI
Session:	2017	Durée:	3 heures
Épreuve:	Mathématiques	Coef.:	4

L'énoncé de ce sujet peut être gratuitement téléchargé sur :

www.simo.education

1.2 Solution des sujets d'examen

1.2.1 Solution – Probatoire 2012

Solution 1. (p. 2)

Soit

$$p(x) = \cos 4x - 5\cos 2x - 6$$
 pour tout $x \in]-\pi, \pi]$

1.1. Exprimons p(x) en fonction de $\cos 2x$. On sait que $\forall \alpha \in \mathbb{R}$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha = 2\cos^2 \alpha - 1$$

En posant $\alpha = 2x$

On a

$$\cos 2 \cdot 2x = 2\cos^2 2x - 1$$

$$\Rightarrow \cos 4x = 2\cos^2 2x - 1$$

Donc

$$p(x) = 2\cos^2 2x - 1 - 5\cos 2x - 6$$
$$= 2\cos^2 2x - 5\cos 2x - 7$$

1.2. Résolvons dans $]-\pi,\pi]$ l'équation

$$2\cos^2 2x - 5\cos 2x - 7 = 0$$

Posons $X = \cos 2x$

Alors l'équation devient

$$2X^2 - 5X - 7 = 0$$

On a

$$\Delta = 5^2 - 4 \times 2 \times (-7)$$

$$= 25 + 56 = 81 = 9^2$$

$$= 25 + 56 = 81 = 9^{5}$$

$$\Leftrightarrow X_{1} = \frac{5 - 9}{4} = -1 \quad \text{ou} \quad X_{2} = \frac{5 + 9}{4} = \frac{7}{2}$$

D'où $\cos 2x = -1$ ou $\cos 2x = \frac{7}{2}$

$$\Leftrightarrow \cos 2x = -1$$
 car $\cos 2x = \frac{7}{2}$ est impossible

$$\Leftrightarrow \cos 2x = \cos \pi$$

$$\Leftrightarrow 2x = \pi + 2k\pi \quad (k \in \mathbb{Z})$$

$$\iff x = \frac{\pi}{2} + k\pi \quad (k \in \mathbb{Z})$$

Or $x \in]-\pi,\pi]$

$$\Leftrightarrow -\pi < x \le \pi$$

$$\Leftrightarrow -\pi < \frac{\pi}{2} + k\pi \le \pi$$

$$\Leftrightarrow -1 < \frac{1}{2} + k \le 1$$

$$\iff -\frac{3}{2} < k \le \frac{1}{2}$$

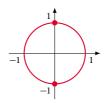
$$\Leftrightarrow k = \{-1; 0\}$$

D'où
$$x = \frac{\pi}{2} - \pi = -\frac{\pi}{2}$$
 ou $x = \frac{\pi}{2}$

Done

$$S = \left\{ -\frac{\pi}{2}; \frac{\pi}{2} \right\}$$

1.3. Plaçons les solution sur le cercle trigonométrique.

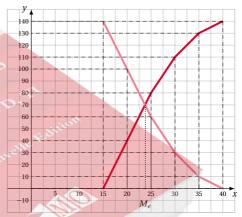


Solution 2. (p. 2)

2.1. Complétons le tableau

Classes	[15, 20[[20, 25[[25,30[[30, 35[[35,40[Total
Effectifs	40	40	30	20	10	140
Effectif cumulés croissants	40	80	110	130	140	500
Effectifs cumulés décroissants	140	100	60	30	10	340

2.2. Diagramme des effectifs cumulés croissante et des effectifs cumulés décroissants.



2.3. Déduisons une valeur approchée de la médiane *Me* de cette série.

On remarque que les diagrammes des effectifs cumulés croissants et décroissants se coupent au point d'abscisse ≈ 24 . Donc la médiane de cette série statistique est $Me \approx 24$.

Solution 3. (p. 2)

Problème

Le plan est muni du repère $(O; \vec{i}, \vec{j})$.

3.1. Partie A

$$f(x) = \frac{2x^2 + 5x}{2(x+1)}$$

(C) sa courbe représentative et D_f son ensemble de définition.

3.1.1. Déterminons D_f .

f est définie si et seulement si

$$2(x+1) \neq 0$$

$$\iff x+1 \neq 0$$

$$\iff x \neq -1$$

Donc

$$D_f = \mathbb{R}\{-1\} =]-\infty, -1[\cup]-1, +\infty[$$

3.1.2. Déterminons les réels *a*, *b* et *c* tels que :

$$f(x) = ax + b + \frac{c}{x+1} \quad \forall x \in D_f$$

S'il existe de tels réels.

Alors

$$f(x) = ax + b + \frac{c}{x+1}$$

$$= \frac{(ax+b)(x+1) + c}{x+1}$$

$$= \frac{ax^2 + (a+b)x + b + c}{x+1}$$

Or
$$f(x) = \frac{2x^2 + 5x}{2(x+1)} = \frac{x^2 + \frac{5}{2}x + 0}{x+1}$$

D'où par identification on a

$$\begin{cases} a = 1 \\ a + b = \frac{5}{2} \\ b + c = 0 \end{cases} \iff \begin{cases} a = 1 \\ b = \frac{5}{2} - 1 = \frac{3}{2} \\ c = -b = -\frac{3}{2} \end{cases}$$

Donc

$$a = 1$$
, $b = \frac{3}{2}$ et $c = -\frac{3}{2}$

et

$$f(x) = x + \frac{3}{2} - \frac{\frac{3}{2}}{x+1}$$

3.1.3. f étant une fonction rationnelle alors elle est dérivable sur son domaine de définition.

Et $\forall x \in D_f$,

$$f'(x) = \left(x + \frac{3}{2} - \frac{\frac{3}{2}}{x+1}\right)'$$
$$= 1 + \frac{\frac{3}{2}}{(x+1)^2}$$

3.1.4. Déterminer les limites de f aux bornes de D_f On a

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(x + \frac{3}{2} - \frac{\frac{3}{2}}{x+1} \right)$$
$$= (-\infty) + \frac{3}{2} - 0 = -\infty$$
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(x + \frac{3}{2} - \frac{\frac{3}{2}}{x+1} \right)$$

$$= (+\infty) + \frac{3}{2} - 0 = +\infty$$

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{-}} \left(x + \frac{3}{2} - \frac{\frac{3}{2}}{x+1} \right)$$

$$= -1 + \frac{3}{2} - \frac{\frac{3}{2}}{0^{-}} = +\infty$$

$$\lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{+}} \left(x + \frac{3}{2} - \frac{\frac{3}{2}}{x+1} \right)$$

$$= -1 + \frac{3}{2} - \frac{\frac{3}{2}}{0^{+}} = -\infty$$

3.1.5. Montrons que la droite d'équation $y = x + \frac{3}{2}$ est asymptote oblique à (C). On a

$$f(x) = x + \frac{3}{2} - \frac{\frac{3}{2}}{x+1}$$

$$\Leftrightarrow f(x) - \left(x + \frac{3}{2}\right) = -\frac{\frac{3}{2}}{x+1}$$

Donc

$$\lim_{x \to +\infty} \left[f(x) - \left(x + \frac{3}{2} \right) = \lim_{x \to +\infty} - \frac{\frac{3}{2}}{x+1} = 0 \right]$$

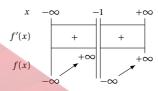
Par conséquent la droit d'équation $y = x + \frac{3}{2}$ est asymptote oblique à (C).

3.1.6. Dressons le tableau de variation.

Nous avons obtenu à la question 3.1.3. que

$$f'(x) = 1 + \frac{\frac{3}{2}}{(1+x)^2} > 0 \quad \forall x \in D_f$$

Donc f est croissante sur $]-\infty,-1[$ et sur $]-1,+\infty[$.



3.1.7. Montrer que $I\left(-1,\frac{1}{2}\right)$ est le centre de symétrie de

On sait qu'un point $\Omega(a, b)$ est le centre de symétrie de la courbe (C) d'une fonction f si et seulement si $\forall x \in D_f$ tel que $a - x \in D_f$ et $a + x \in D_f$ alors

$$f(a-x)+f(a+x)=2b$$

On a donc, dans notre cas, $\forall x \in D_f / -1 - x \in D_f$ et $-1 + x \in D_f$ c'est-à-dire $x \neq 0$,

$$f(-1-x)+f(-1+x)$$

$$=(-1-x)+\frac{3}{2}-\frac{\frac{3}{2}}{-1-x+1}+(-1+x)$$

$$+\frac{3}{2}-\frac{\frac{3}{2}}{-1+x+1}$$

$$=-1-x+\frac{3}{2}-\frac{\frac{3}{2}}{-x}-1+x+\frac{3}{2}-\frac{\frac{3}{2}}{x}$$

$$=-2+3=1=2\times\frac{1}{2}$$

D'où $I\left(-1,\frac{1}{2}\right)$ est le centre de symétrie de la courbe (*C*). 3.1.8. Déterminons une équation cartésienne de la tangente (T) à (C) au point d'abscisse 0. On sait que

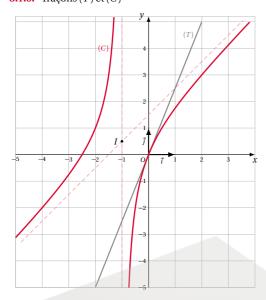
$$(T): y - f(0) = f'(0)(x - 0)$$

 $(T): \iff y = f'(0) \times x + f(0)$

Or
$$f(0) = 0$$
 et $f'(0) = 1 + \frac{3}{2} = \frac{5}{2}$
D'où

$$(T): y = \frac{5}{2}x$$

3.1.9. Traçons (T) et (C)



3.2. Partie B

$$A(1,-1), B(-4,0), \vec{v}(1,1)$$

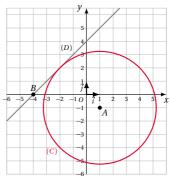
3.2.1. Équation cartésienne de (D)Soit M(x, y)

$$M \in (D) \Leftrightarrow \det(\overrightarrow{BM}, \overrightarrow{v}) = 0$$

$$\Leftrightarrow \begin{vmatrix} x+4 & 1 \\ y & 1 \end{vmatrix} = 0$$

$$\Leftrightarrow x+4-y=0$$

$$\Leftrightarrow x-y+4=0$$
(D)



3.2.2. Montrons que $(AH) \perp (D)$ Il suffit de montrer que $\vec{AH} \perp \vec{v}$ c'est-à-dire $\vec{AH} \cdot \vec{v} = 0$ On a $\vec{AH}(-3,3)$ et $\vec{v}(1,1)$ Donc $\vec{AH} \cdot \vec{v} = -3 + 3 = 0$ D'où $(AH) \perp (D)$ **3.2.3.** Vérifions que $H \in (D)$ (D): x-y+4=0 et H(-2,2)On a

$$-2-(2)+4=-2-2+4$$

= $-4+4=0$

Donc $H \in (D)$

- \blacksquare Déduisons en une équation et le rayon de (C')Comme $H \in (D)$ et $(AH) \perp (D)$ alors H est le projeté orthogonal de A sur (D). D'où (C') est le cercle de centre A et de rayon R = AH.
 - Le rayon $R = AH = \sqrt{(3)^2 + (3)^2} = 3\sqrt{2}$
 - Équation cartésienne de (C'). Soit M(x, y),

$$M \in (C') \iff AM^2 = R^2 = (3\sqrt{2})^2 = 18$$

$$\iff (x-1)^2 + (y+1)^2 = 18$$

$$\iff x^2 - 2x + 1 + y^2 + 2y$$

$$+ 1 = 18$$

$$\iff x^2 + y^2 - 2x + 2y - 16 = 0 \qquad (C')$$

Solution - Probatoire 2013 1.2.2

Solution 4. (p. 2)

4.1. Si on choisit simultanément 3 personne parmi 10, le nombre total de choix possible est :

$$N = C_{10}^{3} = \frac{10!}{3!(10-3)!}$$
$$= \frac{10!}{3!7!} = \frac{10 \times 9 \times 8}{3 \times 2} = 120$$

4.2. Nombre N_1 de possibilité où les 3 personnes appartiennent au même groupe.

On peut alors soit choisir 3 personnes parmi les 4 du groupe O, soit choisir 3 personnes parmi les trois du

groupe A. On ne peut ni avoir trois personnes du groupe B ni 3 personnes du groupe AB car ces groupes disposent respectivement de 2 et 1 personnes seulement.
On a donc

$$N_1 = C_4^3 + C_3^3 = 4 + 1 = 5$$

4.3. Le nombre N_2 de choix où deux personnes au moins appartiennent au même groupe sanguin Cela peut arriver dans les cas regrouper dans le tableau suivant.

Cas	Nombre de possibilité
2 personnes du groupe O parmi les 4 et 1 autre personne parmi les 6 des autres groupes.	$C_4^2 C_6^1 = 36$
3 personnes du groupe O parmi les 4.	$C_4^3 = 4$
2 parmi les 3 du groupe A et 1 parmi les 7 des autres groupes.	$C_3^2 C_7^1 = 21$
3 personnes parmi les 3 du groupe A.	$C_3^3 = 1$
2 personnes parmi les 2 du groupe B et 1 parmi les 8 autres.	$C_2^2 C_8^1 = 8$
Total	70

Ainsi $N_2 = 70$.

Solution 5. (p. 2)

$$\begin{cases} u_0 = 1 \\ u_{n+1} = -\frac{1}{2} u_n + 3 \end{cases}$$

5.1. Calculons u_1 , u_2 et u_3 .

$$u_1 = -\frac{1}{2}u_0 + 3 = -\frac{1}{2} \times 1 + 3$$

$$= -\frac{1}{2} + 3 = \frac{5}{2}$$

$$u_2 = -\frac{1}{2}u_1 + 3 = -\frac{1}{2} \times \left(\frac{5}{2}\right) + 3$$

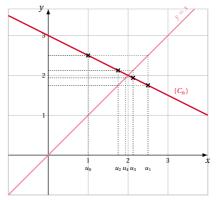
$$= -\frac{5}{4} + 3 = \frac{7}{4}$$

$$u_3 = -\frac{1}{2}u_2 + 3 = -\frac{1}{2} \times \left(\frac{7}{4}\right) + 3$$

$$= -\frac{7}{8} + 3 = \frac{17}{8}$$

5.2. 5.2.1. $h(x) = -\frac{1}{2}x + 3$.

5.2.2. Représentons dans le même repère orthonormé, les cinq premiers termes de (u_n) sur l'axe des abscisses.



5.3. 5.3.1. Prouvons que v_n est une suite géométrique. Il suffit de montrer qu'il existe $q\in\mathbb{R}$ tel que $\forall n\in\mathbb{N},\ v_{n+1}=q\,v_n$ On a

$$\begin{aligned} v_{n+1} &= u_{n+1} - 2 = -\frac{1}{2}u_n + 3 - 2 \\ &= -\frac{1}{2}u_n + 1 = -\frac{1}{2}(u_n - 2) = -\frac{1}{2}v_n \end{aligned}$$

D'où (v_n) est une suite géométrique de raison $q = -\frac{1}{2}$ et de premier terme $v_0 = u_0 - 2 = 1 - 2 = -1$.

5.3.2. Expression de v_n en fonction de n.

Puisque (v_n) est une suite géométrique de raison $q=-\frac{1}{2}$ et de premier terme $v_0=-1$, alors $\forall n\in\mathbb{N}$ on a

$$v_n = v_0 q^n = -1 \times \left(-\frac{1}{2}\right)^n = -\left(-\frac{1}{2}\right)^n$$

Expression de u_n en fonction de n.

$$v_n = u_n - 2$$

$$\iff u_n = v_n + 2 = 2 - \left(-\frac{1}{2}\right)^n$$

Solution 6. (p. 3)

Problème

6.1. Partie A

$$f(x) = x + 1 + \frac{1}{x}$$

6.1.1. Étude des variations de f et tableau de variation.

$$D_f = \mathbb{R}^* =]-\infty, 0[\cup]0, +\infty[$$

f est continue et dérivable sur D_f et $\forall x \in D_f$

$$f'(x) = 1 - \frac{1}{x^2} = \frac{x^2 - 1}{x^2} = \frac{(x - 1)(x + 1)}{x^2}$$

Tableau de signe de f' et sens de variations de f.

x	-c	∞	-	-1 () i	1 +0	∞
x-1		_		-	_ (+	
x + 1		_	() +	+	+	
x^2		+		+ (+	+	
f'(x)		+	() –	- () +	

Ainsi f est croissante sur $]-\infty,-1]$ et sur $[1,+\infty[$ et f est décroissante sur]-1,0[et sur]0,1[.

Limites aux bornes de D_f

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \left(x + 1 + \frac{1}{x} \right)$$

$$= \lim_{x \to +\infty} x = -\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left(x + 1 + \frac{1}{x} \right)$$

$$= \lim_{x \to +\infty} x = +\infty$$

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left(x + 1 + \frac{1}{x} \right)$$

$$= 0 + 1 + \frac{1}{0^{-}} = -\infty$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left(x + 1 + \frac{1}{x} \right)$$

$$= 0 + 1 + \frac{1}{0^{+}} = +\infty$$

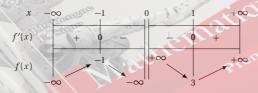
En plus

$$f(-1) = -1 + 1 + \frac{1}{-1} = -1$$

et

$$f(1) = 1 + 1 + \frac{1}{1} = 3$$

D'où le tableau de variations suivant :



6.1.1.2. Asymptotes de (C_f) .

- Comme $\lim_{x\to 0^-} f(x) = -\infty$ et $\lim_{x\to 0^+} f(x) = +\infty$ la droite d'équation x=0 est asymptote verticale à (D_f) .
- Aussi

$$f(x) = x + 1 + \frac{1}{x}$$

$$\Leftrightarrow f(x) - (x + 1) = \frac{1}{x}$$

$$\Rightarrow \lim_{x \to \pm \infty} f(x) - (x + 1) = \lim_{x \to \pm \infty} \frac{1}{x} = 0$$

Donc la droite d'équation y = x + 1 est asymptote oblique à (C_f) .

6.1.1.3. Démontrons que le point I(0,1) est centre de symétrie de (C_f) .

 $Rappel: \Omega(a,b)$ est centre de symétrie de (C_f) si et seulement si $\forall x$ tel que $a+x\in D_f$ et $a-x\in D_f$ on a

$$f(a+x)+f(a-x)=2b$$

Il suffit de montrer $\forall x$ on a

$$f(x)+f(-x)=2\times 1$$

On a

$$f(x) + f(-x) = x + 1 + \frac{1}{x} - x + 1 + \frac{1}{-x}$$

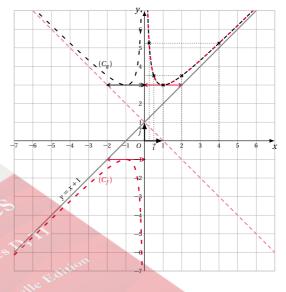
D'où I(0,1) est centre de symétrie de (C_f) .

6.1.2. Construction (C_f)

Tableau de valeurs particulières

x	0,5	2	4	0,25
f(x)	3,5	3,5	5,25	5,25

D'où la courbe suivante



6.1.3. Soit la fonction g définie par g(x) = f(|x|)

6.1.3.1. Montrons que *g* est paire

 $\forall x \in D_f \text{ alors } f(|x|) \text{ existe} \Rightarrow f(|-x|) \text{ existe} \Rightarrow -x \in D_f$

Et g(-x) = f(|-x|) = f(|x|) = g(x)

D'où g est paire

6.1.3.2. Programme de construction de (C_g) à partir de (C_f)

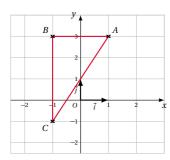
- Conserver la partie de (C_f) pour les x > 0.
- Pour obtenir la partie de (C_g) pour les x < 0, faire le symétrique de la partie précédente par rapport à l'axe des ordonnées.

6.1.3.3. Traçons (C_g) (voir la courbe)

6.2. Partie B

$$A(1,3)$$
, $B(-1,3)$ et $C(-1,-1)$

6.2.1. Nature de *ABC*



Méthode 1 :

 $\vec{BA}(2,0)$ et $\vec{BC}(0,-4)$

$$\vec{BA} \cdot \vec{BC} = 2 \times 0 + 0 \times (-4) = 0 + 0 = 0$$

 $\mathrm{Donc}\,(BA)\,\bot\,(BC)$

Par conséquent ABC est un triangle rectangle en B.

■ Méthode 2 :

$$\vec{AB}(-2,0)$$
; $\vec{AC}(-2,-4)$ et $\vec{BC}(0,-4)$.

$$\Rightarrow AB^2 = (-2)^2 + 0^2 = 4$$

$$AC^2 = (-2)^2 + (-4)^2 = 4 + 16 = 20$$

$$BC^2 = 0^2 + (-4)^2 = 16$$

$$\Rightarrow AB^2 + BC^2 = 4 + 16 = AC^2$$

D'après la réciproque de la propriété de Pythagore, ABC est un triangle rectangle en B.

6.2.2. Calculons $\cos \widehat{ACB}$ et $\cos \widehat{BAC}$

$$\cos \widehat{ACB} = \frac{BC}{AC} = \frac{\sqrt{16}}{\sqrt{20}}$$

$$= \frac{4}{2\sqrt{5}} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}$$

$$\cos \widehat{BAC} = \frac{AB}{AC} = \frac{\sqrt{4}}{\sqrt{20}}$$

$$= \frac{2}{2\sqrt{5}} = \frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$$

$$\Rightarrow$$
 mes $\widehat{ACB} \approx 26,56^{\circ}$ et mes $\widehat{BAC} \approx 63,43^{\circ}$

6.2.3. Déterminons l'ensemble des points M du plan tels que $MA^2 + MB^2 = 20$. Soit G le milieu de [AB]

$$MA^{2} + MB^{2} = (\vec{MG} + \vec{G}A)^{2} + (\vec{MG} + \vec{G}B)^{2}$$

$$= MG^{2} + GA^{2} + 2\vec{MG} \cdot \vec{G}A$$

$$+ MG^{2} + GB^{2} + 2\vec{MG} \cdot \vec{G}B$$

$$= 2MG^{2} + GA^{2} + GB^{2}$$

$$+ 2\vec{MG}(\vec{G}A + \vec{G}B)$$
or $\vec{G}A + \vec{G}B = \vec{0}$ et $GA = GB$

$$= 2MG^{2} + 2GA^{2}$$

Donc

$$MA^{2} + MB^{2} = 20$$

$$\Leftrightarrow 2MG^{2} + 2GA^{2} = 20$$

$$\Leftrightarrow 2(MG^{2} + GA^{2}) = 20$$

$$\Leftrightarrow MG^{2} + GA^{2} = 10$$

or
$$GA = \frac{AB}{2} = \frac{2}{2} = 1$$

D'où

$$MG^2 + 1 = 10$$

$$\Leftrightarrow MG^2 = 9$$

$$\Leftrightarrow MG = 3$$

Ainsi (E) est le cercle de centre G et de rayon 3.

1.2.3 Solution - Probatoire 2014

Solution 7. (p. 3)

ABC est un triangle isocèle.

7.1. Déterminons et construisons le point *G* .

$$G = bar\{(A,3), (B,2), (C,-1)\}$$

$$= bar\{(A,3),(C,-1),(B,2)\}$$

Posons

$$G_1 = bar\{(A,3),(C,-1)\}$$

Alors d'après le barycentre partiel

$$G = bar\{(G_1, 2), (B, 2)\}$$

$$= bar \{ (G_1, 1), (B, 1) \}$$

Donc G est le milieu de $[G_1B]$

■ Déterminons G_1 .

$$G_1 = \text{bar}\{(A,3),(C,-1)\}$$

$$\Leftrightarrow 3\overrightarrow{AG_1} - \overrightarrow{CG_1} = \vec{0}$$

$$\Leftrightarrow 3\vec{AG_1} - (\vec{CA} + \vec{AG_1}) = \vec{0}$$

$$\Leftrightarrow 2\vec{AG_1} = -\vec{AC}$$

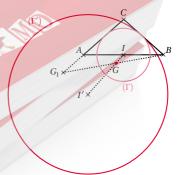
$$\Leftrightarrow \vec{AG_1} = -\frac{1}{2}\vec{AC}$$

 G_1 est donc le point tel que $\vec{AG_1} = -\frac{1}{2}\vec{AC}$.

Il s'agit donc du symétrie du milieu de [AC] par rapport à A.

Et G est le milieu de $[G_1 B]$

D'où la construction sur la figure ci-dessous



7.2. 7.2.1. Démontrons que $\overrightarrow{GM}' = -3\overrightarrow{GM}$

On a

$$M\vec{M}' = 3\vec{M}A + 2\vec{M}B - \vec{M}C$$

$$\Leftrightarrow \vec{M}G + G\vec{M}' = 3(\vec{M}G + \vec{G}A)$$

$$+2(\vec{M}G + \vec{G}B) - (\vec{M}G + \vec{G}C)$$

$$= 3\vec{M}G + 2\vec{M}G - \vec{M}G + 3\vec{G}A$$

$$+2\vec{G}B - \vec{G}C$$

$$= 4\vec{M}G + 3\vec{G}A + 2\vec{G}B - \vec{G}C$$

Or $3\vec{G}A + 2\vec{G}B - \vec{G}C = \vec{0}$ car $G = \text{bar}\{(A,3), (B,2), (C,-1)\}$

$$\vec{MG} + \vec{GM'} = 4\vec{MG}$$

 $\iff \vec{GM'} = 4\vec{GM} - \vec{MG} = 3\vec{MG}$
 $\iff \vec{GM'} = -3\vec{GM}$

7.2.2. h est donc l'homothétie de centre G est de rapport -3

7.3.

$$(\Gamma) = \left\{ M \in P / M A^2 + M B^2 = 26 \right\}$$

7.3.1. Déterminons et construisons (Γ).

$$M \in P/MA^2 + MB^2 = 26$$

Soit I le milieu de [AB].

$$\Leftrightarrow (\vec{M}I + \vec{I}A)^2 + (\vec{M}I + \vec{I}B)^2 = 26$$

$$\Leftrightarrow MI^2 + IA^2 + 2\vec{M}I \cdot \vec{I}A + MI^2 + IB^2$$

$$+ 2\vec{M}I \cdot \vec{I}B = 26$$

$$\Leftrightarrow 2MI^2 + IA^2 + IB^2 + 2\vec{M}I \cdot (\vec{I}A + \vec{I}B)$$

$$= 26 \text{ or } \vec{I}A + \vec{I}B = \vec{0}$$

$$\Leftrightarrow 2MI^2 + IA^2 + IB^2 = 26$$

$$\Leftrightarrow 2MI^2 + IA^2 + IB^2 = 26$$

$$\Leftrightarrow 2MI^2 = 26 - IA^2 - IB^2$$

$$\text{ or } IA = IB = \frac{AB}{2} = 3 \text{ cm}$$

$$\Leftrightarrow 2MI^2 = 26 - 9 - 9 = 8$$

$$\Leftrightarrow MI = 2$$

D'où (Γ) est le cercle de centre I et de rayon 2 cm **7.3.2.** Image (Γ') de (Γ) par h

Rappel: Si h est une homothétie de rapport k et (Γ) un cercle de centre O et de rayon r, alors l'image de (Γ) par h est un cercle de centre O' = h(O) et de rayon r' = |k| r.

Donc dans notre cas : (Γ') est le cercle de centre I' = h(I)et de rayon $r = 3 \times 2 = 6$ cm d'où la construction sur la figure ci-dessus.

Solution 8. (p. 3)

8.1. Partie A

8.1.1. Montrons que $\forall x \in \mathbb{R}$

$$2\cos\left(x - \frac{\pi}{3}\right) = \cos x + \sqrt{3}\sin x$$

On sait que

$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$

Donc

$$2\cos\left(x - \frac{\pi}{3}\right) = 2\left(\cos x \cos\frac{\pi}{3} + \sin x \sin\frac{\pi}{3}\right)$$
$$= 2\left(\frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x\right)$$
$$= \cos x + \sqrt{3}\sin x$$

8.1.2. Résolvons dans \mathbb{R} , puis dans $[0,2\pi[$ l'équation

$$\cos x + \sqrt{3}\sin x = \sqrt{2}$$

$$\cos x + \sqrt{3}\sin x = \sqrt{2}$$

$$\Leftrightarrow 2\cos\left(x - \frac{\pi}{3}\right) = \sqrt{2}$$

$$\Leftrightarrow \cos\left(x - \frac{\pi}{3}\right) = \frac{\sqrt{2}}{2} = \cos\frac{\pi}{4}$$

$$\Leftrightarrow x - \frac{\pi}{3} = \frac{\pi}{4} + 2k\pi$$
ou $x - \frac{\pi}{3} = -\frac{\pi}{4} + 2k\pi$ $(k \in \mathbb{Z})$

$$\Leftrightarrow x = \frac{7\pi}{12} + 2k\pi$$
ou $x = \frac{\pi}{12} + 2k\pi$ $(k \in \mathbb{Z})$

L'ensemble solution dans \mathbb{R} est donc :

$$S = \left\{ \frac{\pi}{12} + 2k\pi, \, \frac{7\pi}{12} + 2k\pi \left(k \in \mathbb{Z} \right) \right\}$$

Solution dans $[0, 2\pi]$

Pour $x = \frac{\pi}{12} + 2k\pi$ (cherchons k tel que $x \in [0, 2\pi]$)

$$\Rightarrow 0 \le \frac{\pi}{12} + 2k\pi < 2\pi$$

$$\Rightarrow -\frac{\pi}{12} \le 2k\pi < 2\pi - \frac{\pi}{12}$$

$$\Rightarrow -\frac{1}{24} \le k < \frac{23}{24}, \quad (k \in \mathbb{Z})$$

$$x = \frac{\pi}{12}$$

De même en prenant $x = \frac{7\pi}{12} + 2k\pi$ on obtient que la seule solution de $[0, 2\pi]$ est $\frac{7\pi}{12}$. D'où

$$S_{[0,2\pi[} = \left\{ \frac{\pi}{12}, \frac{7\pi}{12} \right\}$$

8.2. Partie B

8.2.1. Nombre N de bureau qu'on peut former.

Méthode 1 : Il suffit de choisir le président parmi les 80 membres puis le commissaire au compte parmi les 79 restants, puis le censeur parmi les 78 restants. D'où

$$N = 80 \times 79 \times 78 = 492960$$

Méthode 2: Il suffit de choisir successivement et distinctement (« sans remise ») les 3 membres du bureau

parmi les 80 membres.

$$N = A_{80}^{3} = \frac{80!}{(80 - 3)!} = \frac{80 \times 79 \times 78 \times 77!}{77!}$$
$$= 80 \times 79 \times 78 = 492960$$

8.2.2. Nombre de bureau ne comportant pas de jeune qu'on peut former.

Il suffit de procéder comme précédemment mais en prenant uniquement l'univers constitué des 26 hommes et 12 femmes mariées : soit au total 38 personnes. D'où

$$N_2 = A_{38}^3 = \frac{38!}{(38-3)!}$$
$$= \frac{38 \times 37 \times 36 \times 35!}{35!} = 50616$$

Solution 9. (p. 3)

Problème

9.1. Partie A

9.1.1. Domaine de définition D_f .

D'après le tableau de variations donné et puisque f est paire,

$$D_f =]-\infty, +\infty[=\mathbb{R}$$

9.1.2. 9.1.2.1. Limites de f aux bornes de D_f .

$$\lim_{x \to +\infty} f(x) = 2$$

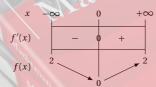
et
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} f(x) = 2 \operatorname{car} f \text{ est paire}$$

- 9.1.2.2. Asymptote et élément de symétrie
- Puisque $\lim_{x\to\infty} f(x) = 2$ alors (*C*) admet la droite y=2 comme asymptote horizontal.
- Puisque f est paire, (C) est symétrique par rapport à l'axe des ordonnées.
- **9.1.3.** Signe de f'(x) sur $]-\infty, 0]$

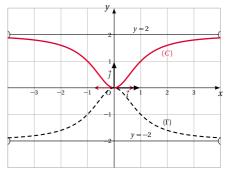
Comme f est paire et est croissante sur $[0, +\infty[$, alors f est décroissante sur $]-\infty, 0[$.

Donc f'(x) est négatif sur $]-\infty,0[$

9.1.4. Recopions et complétons le tableau de variation. D'après les réponses obtenues précédemment nous avons :



9.1.5. Construisions (C)



9.1.6. Déterminons a et b tels que $f(x) = \frac{ax^2 + b}{x^2 + 1}$ On sait que f(0) = 0

$$\Rightarrow \frac{a \times 0^2 + b}{0^2 + 1} = 0 \Rightarrow b = 0$$

Aussi

$$\lim_{x \to +\infty} f(x) = 2$$

$$\iff \lim_{x \to +\infty} \frac{ax^2 + b}{x^2 + 1} = 2$$

$$\Rightarrow \lim_{x \to +\infty} \frac{ax^2}{x^2} = 2$$

$$\Rightarrow a = 2$$

D'où a = 2 et b = 0.

9.1.7. Déduisons la courbe (Γ) de h.

Comme h(x) = -f(x), $\forall x \in D_f$, (Γ) est le symétrique de (C) par rapport à l'axe des abscisse (voir la courbe cidessus)

9.2. Partie B

On donne

$$g(x) = \frac{2x^2}{x^2 + 1}$$
, $U_0 = 0$ et $U_n = g(n)$

9.2.1. Démontrons que $\forall n \in \mathbb{N}, U_n \geq 0$

$$U_n = g(n) = \frac{2n^2}{n^2 + 1} \ge 0, \quad \forall n \in \mathbb{N}$$

car $n^2 \ge 0$ et $2n^2 + 1 > 0$

9.2.2. Montrons que U_n est croissante

Étant donné que g est croissante sur $[0, +\infty[$ (voir la partie précédente) alors comme

$$n \le n+1$$

$$\Rightarrow g(n) \le g(n+1)$$

$$\Rightarrow U_n \le U_{n+1}$$

D'où (U_n) est croissante

9.2.3. Étude du signe de $U_n - 2$

$$U_n - 2 = g(n) - 2 = \frac{2n^2}{n^2 + 1} - 2$$
$$= \frac{2n^2 - 2n^2 - 2}{n^2 + 1}$$
$$= \frac{-2}{n^2 + 1} \le 0$$

Déduisons que (U_n) est majorée.

$$U_n-2\leq 0$$

$$\Leftrightarrow U_n \leq 2, \quad \forall n \in \mathbb{N}$$

Donc (U_n) est majorée par 2

Montrons que *U_n* est convergente
 (*U_n*) étant croissante et majorée est convergente
 Ft

$$\lim_{n \to +\infty} U_n = \lim_{n \to +\infty} g(n) = \lim_{x \to +\infty} \frac{2n^2}{n^2 + 1} = 2$$

1.2.4 Solution - Probatoire 2015

Solution 10. (p. 4)

10.1. Complétons le tableau

Salaire	[1,2[[2,3[[3,5[[5,8[
Effectifs	34	76	51	39
Eff cum croissant	34	110	161	200
Centre de classe	1,5	2,5	4	6,5

10.2. Le mode de la série

La classe modale (classe ayant le plus grand effectif) est : [2,3]

Donc le mode de la série (centre de cette classe) est 2,5

Calcul du salaire journalier moyen
 La moyenne de la série est :

$$M = \frac{\sum n_i \, c_i}{N}$$

où N est l'effectif total, les n_i et les c_i sont les effectifs et centres de chaque classe;

$$M = \frac{34 \times 1,5 + 76 \times 2,5 + 51 \times 4 + 39 \times 6,5}{200}$$
$$= 3,4925$$

Étant donné que les salaires sont exprimé en millier de francs, le salaire moyen est de 2,4925 × 1000 soit 3492,5 francs.

10.3. Calculons la valeur exacte de la médiane M_e La moitié de l'effectif total

$$\frac{N}{2} = \frac{200}{2} = 100 \in [34, 110[$$

Donc

$$M_e \in [2,3[$$
 et $\frac{110-100}{3-M_e} = \frac{110-34}{3-2}$

$$\Rightarrow \frac{110 - 100}{100 - 34} = 3 - M_e$$
$$\Rightarrow M_e = 3 - \frac{10}{76} = \frac{109}{38}$$

Donc la médiane est $M_e = \frac{109}{38}$.

10.4. Estimons le nombre d'ouvrier *x* ayant un salaire journalier inférieur à 4500 francs.

Donc

$$\frac{161 - x}{5 - 4.5} = \frac{161 - 110}{5 - 3}$$

$$\Rightarrow 161 - x = \frac{161 - 110}{2} \times 0.5 = 12.75$$

$$\Rightarrow x = 148.25$$

Solution 11. (p. 4)

11.1. 11.1.1. Capital de Issa au 1 ^{er}janvier 2011.

Il s'agit de déterminer u_1 .

Étant donné que Issa a choisi le type d'épargne qui permet d'augmenter le capital de 7 % chaque année,

$$u_1 = \frac{7}{100} u_0 + u_0 = \frac{1}{700} \times 300\,000 + 300\,000$$
$$= 321\,000$$

Le capital de Issa au 1 ^{er}janvier 2011 est donc de 321 000 FCFA.

11.1.2. Montrons que $u_{n+1} = 1,07 u_n$

Si le capital de Issa l'année n est de u_n , alors son augmentation l'année n+1 sera de 7% de u_n soit $\frac{7}{100}u_n$. D'où le capital de l'année n+1 est de

$$u_{n+1} = u_n + \frac{7}{100} u_n = u_n + 0.07 u_n$$

= 1.07 u_n

Puisque $\forall n \in \mathbb{N}$, $u_{n+1} = 1{,}07 u_n$; (u_n) est une suite géométrique de raison 1,07.

11.1.3. Exprimons en fonction de n le capital de Issa au 1 e^{r} janvier de l'an 2010 + n.

Il s'agit d'exprimer u_n en fonction de u_n .

Rappel:Si (u_n) est suite géométrique de premier terme u_0 et de raison q, alors

$$u_n = q^n u_0, \forall n \in \mathbb{N}$$

Pour notre cas $u_0 = 300\,000$ et q = 1,07

$$u_n = 300\,000(1,07)^n \quad (n \in \mathbb{N})$$

11.2. 11.2.1. Capital de Pierre au 1 ^{er}janvier 2011. Il s'agit de ν_1 . Étant donné que Pierre choisit le mode d'épargne qui permet au capital d'augmenter de 21 000 FCFA chaque année.

$$v_1 = v_0 + 21\,000 = 300\,000 + 21\,000$$

= $321\,000$

11.2.2. Exprimons v_{n+1} en fonction de v_n Étant donné que le capital de Pierre augmente de 21 000

chaque année

$$v_{n+1} = v_n + 210000$$

11.2.3. Puisque $\forall n$; $v_{n+1} = v_n + r$ avec $r = 21\,000$, (v_n) est une suite géométrique de raison $r = 21\,000$.

11.2.4. Capital de Pierre au 1 e^r janvier de l'an 2010 + n.

Rappel: Si (u_n) est une suite géométrique de premier

terme u_0 et de raison r alors

$$u_n = u_0 + r n, \quad \forall n \in \mathbb{N}$$

Comme $v_0 = 300\,000$ et $r = 21\,000$ Alors

$$v_n = 21\,000\,n + 300\,000$$

11.3. 11.3.1. Déterminer u_3 et u_4

$$u_3 = 300\,000 \times 1,07^3 = 367\,512,9$$

 $u_4 = 300\,000 \times 1,07^4 = 393\,238,803$

11.3.2. Issa pourra donc acheter sa moto à partie de l'an 2010+4 soit en 2014

11.4. Année à partir de laquelle Pierre acheter sa moto Il suffit de résoudre l'inéquation $v_n \ge 390\,000$

$$\Leftrightarrow 21000n + 300000 \ge 390000$$

$$\Leftrightarrow 21000n \ge 90000$$

$$\Leftrightarrow 21n > 90$$

$$\iff n \ge 4,286$$

D'où Pierre pourra acheter sa moto à partir de l'année 2015.

Solution 12. (p. 4)

Problème

12.1. Partie A

12.1.1. Développons $(\sqrt{3}-1)^2$

$$(\sqrt{3} - 1)^2 = (\sqrt{3})^2 - 2 \times \sqrt{3} \times 1 + 1^2$$
$$= 3 - 2\sqrt{3} + 1 = 4 - 2\sqrt{3}$$

12.1.2. Résolvons dans ℝ l'équation

$$2x^2 - \left(\sqrt{3} + 1\right)x + \frac{\sqrt{3}}{2} = 0$$

$$\Delta = (\sqrt{3} + 1)^2 - 4 \times 2 \times \frac{\sqrt{3}}{2}$$
$$= 3 + 2\sqrt{3} + 1 - 4\sqrt{3}$$
$$= 4 - 2\sqrt{3} = (\sqrt{3} - 1)^2$$

D'où

$$x = \frac{\sqrt{3} + 1 - (\sqrt{3} - 1)}{2 \times 2}$$

ou
$$x = \frac{\sqrt{3} + 1 + (\sqrt{3} - 1)}{2 \times 2}$$

$$\Rightarrow x = \frac{2}{4} = \frac{1}{2} \quad \text{ou} \quad x = \frac{2\sqrt{3}}{4}$$

L'ensemble solution de l'équation est donc :

$$S = \left\{ \frac{1}{2}; \frac{\sqrt{3}}{2} \right\}$$

12.1.3. Déduisons dans \mathbb{R} , puis dans $[0,2\pi[$ l'ensemble solution de l'équation

$$2\cos^2 x - \left(\sqrt{3} + 1\right)\cos x + \frac{\sqrt{3}}{2} = 0$$

En posant $X = \cos x$ on obtient

$$2X^2 - (\sqrt{3} + 1)X + \frac{\sqrt{3}}{2} = 0$$

qui est l'équation que nous avons résolu à la question précédente donc

$$X = \frac{1}{2} \quad \text{ou} \quad X = \frac{\sqrt{3}}{2}$$

$$\Leftrightarrow \cos x = \frac{1}{2} \quad \text{ou} \quad \cos x = \frac{\sqrt{3}}{2}$$
$$\Leftrightarrow \cos x = \cos \frac{\pi}{2} \quad \text{ou} \quad \cos x = \cos \frac{\pi}{2}$$

$$\iff x = \frac{\pi}{3} + 2k\pi$$

ou
$$x = -\frac{\pi}{3} + 2k\pi$$

ou
$$x = \frac{\pi}{6} + 2k\pi$$

ou
$$-\frac{\pi}{6} + 2k\pi$$
 avec $k \in \mathbb{Z}$

Ainsi l'ensemble solution dans \mathbb{R} est :

$$\begin{split} S_R = & \left\{ -\frac{\pi}{3} + 2k\pi; -\frac{\pi}{6} + 2k\pi; \frac{\pi}{6} + 2k\pi; \frac{\pi}{6} + 2k\pi; \frac{\pi}{6} + 2k\pi; \frac{\pi}{3} + 2k\pi \quad (k \in \mathbb{Z}) \right\} \end{split}$$

- L'ensemble solution dans $[0, 2\pi]$
 - Pour $x = -\frac{\pi}{3} + 2k\pi$ $(k \in \mathbb{Z})$

Déterminons les valeurs de k pour que $x \in [0, 2\pi]$

$$x \in [0, 2\pi] \iff 0 \le x < 2\pi$$

$$\Leftrightarrow 0 \leq -\frac{\pi}{3} + 2k\pi < 2\pi$$

$$\Leftrightarrow \frac{\pi}{3} \le 2k\pi < 2\pi + \frac{\pi}{3}$$

$$\Leftrightarrow \frac{1}{6} \le k < \frac{7}{6} \quad (k \in \mathbb{Z})$$

D'où k = 1 et donc

$$x = -\frac{\pi}{3} + 2\pi = \frac{5\pi}{3}$$

Pour $x = -\frac{\pi}{6} + 2k\pi$ $(k \in \mathbb{Z})$

$$x \in [0, 2\pi[\iff 0 \le x < 2\pi]$$

$$\Leftrightarrow 0 \le -\frac{\pi}{6} + 2k\pi < 2\pi$$

$$\pi$$

$$\Leftrightarrow \frac{\pi}{6} \le 2k\pi < 2\pi + \frac{\pi}{6}$$
1 13

$$\Leftrightarrow \frac{1}{12} \le k < \frac{13}{12} \quad (k \in \mathbb{Z})$$

D'où

$$k=1$$
 et $x=-\frac{\pi}{6}+2\pi=\frac{11\pi}{6}$

Pour
$$x = \frac{\pi}{6} + 2k\pi$$
 $(k \in \mathbb{Z})$

$$x \in [0, 2\pi[\iff 0 \le x < 2\pi]$$

$$\begin{split} &\Longleftrightarrow 0 \leq \frac{\pi}{6} + 2k\pi < 2\pi \\ &\iff -\frac{\pi}{6} \leq 2k\pi < 2\pi - \frac{\pi}{6} \\ &\iff -\frac{1}{12} \leq k < \frac{11}{12} \quad (k \in \mathbb{Z}) \end{split}$$

D'où
$$k = 0$$
 et $x = \frac{\pi}{6}$
Pour $x = \frac{\pi}{3} + 2k\pi$ $(k \in \mathbb{Z})$

$$\begin{split} x \in & [0, 2\pi[\iff 0 \le x < 2\pi \\ \iff 0 \le \frac{\pi}{3} + 2k\pi < 2\pi \\ \iff -\frac{\pi}{3} \le 2k\pi < 2\pi - \frac{\pi}{3} \\ \iff -\frac{1}{a} \le k < \frac{5}{a} \quad (k \in \mathbb{Z}) \end{split}$$

D'où

$$k=0$$
 et $x=\frac{\pi}{3}$

D'où l'ensemble solution de l'équation dans $[0,2\pi[$ est :

$$S_{[0;2\pi[} = \left\{ \frac{\pi}{6}; \frac{\pi}{3}; \frac{5\pi}{6}; \frac{11\pi}{6} \right\}$$

12.2. Partie B

12.2.1. 12.2.1.1. Déterminons les coordonnées de G

$$G\left(\frac{x_A + x_B + x_C}{3}, \frac{y_A + y_B + y_C}{3}\right)$$
soit $G\left(\frac{1+9+1}{3}, \frac{-4-4+2}{3}\right)$

$$\Leftrightarrow G\left(\frac{11}{3}, -2\right)$$

12.2.1.2. G représente le centre de gravité du triangle ABC.

12.2.1.3. Calculons *AB*, *AC* et *BC*

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

$$= \sqrt{(9 - 1)^2 + (-4 + 4)^2} = \sqrt{8^2 - 8^2}$$

$$AC = \sqrt{(1 - 1)^2 + (2 + 4)^2} = 6$$

$$BC = \sqrt{(1 - 9)^2 + (2 + 4)^2} = \sqrt{8^2 + 6^2} = 10$$

Déduisons que ABC est rectangle en A. Il suffit de vérifier que $BC^2 = AB^2 + AC^2$

$$BC^2 = 10^2 = 100$$

 $AB^2 + AC^2 = 8^2 + 6^2 = 64 + 16 = 100$

D'où $BC^2 = AB^2 + AC^2$

Et d'après la réciproque de la propriété de Pythagore, ABC est un triangle rectangle en A

12.2.2. 12.2.2.1. Déterminons et construisons l'ensemble (*C*) des points *M* du plan tels que $MB^2 + MC^2 = 100$.

Soit I le milieu [BC], donc l'isobarycentre de B et C, alors $\vec{IB} + \vec{IC} = \vec{0}$

$$M \in (C)$$

 $\Leftrightarrow MB^2 + MC^2 = 100$

$$\Leftrightarrow (\vec{M}I + \vec{I}\vec{B})^2 + (\vec{M}I + \vec{I}\vec{C})^2 = 100$$

$$\Leftrightarrow \vec{M}I^2 + 2\vec{M}I \cdot \vec{I}\vec{B} + \vec{I}\vec{B}^2 + \vec{M}I^2 + 2\vec{M}I \cdot \vec{I}\vec{C}$$

$$+ \vec{I}\vec{C}^2 = 100$$

$$\Leftrightarrow 2\vec{M}I^2 + IB^2 + IC^2 + 2\vec{M}I(\vec{I}\vec{B} + \vec{I}\vec{C}) = 100$$

$$\text{Or } \vec{I}\vec{B} + \vec{I}\vec{C} = \vec{0}$$

$$\Leftrightarrow 2MI^2 + IB^2 + IC^2 = 100$$

$$\text{Or } IB = IC = \frac{BC}{2} = \frac{10}{2} = 5$$

$$\Leftrightarrow 2MI^2 + 5^2 + 5^2 = 100$$

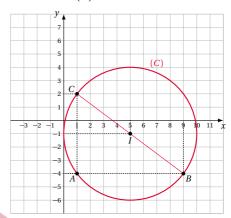
$$\Leftrightarrow 2MI^2 = 100 - 50 = 50$$

$$\Leftrightarrow MI = 5$$

(C) est le cercle de centre I et de rayon 5.

Et puisque IB = IC = 5 il s'agit aussi du cercle de diamètre [BC]

■ Construction de (C)



12.2.2. Déduisons en une représentation paramétrique de (*C*).

On sait que si (C) est une cercle de centre $\Omega(a,b)$ et de rayon r alors

$$\begin{cases} x = a + r \cos \theta \\ y = b + r \sin \theta \end{cases} \quad (\theta \in \mathbb{R})$$

est une représentation paramétrique de (C). Dans notre cas, le centre de (C) est $I\left(\frac{9+1}{2},\frac{-4+2}{2}\right)$ soit I(-5,-1) et le rayon est r=5. D'où

$$\begin{cases} x = 5 + 5\cos\theta \\ y = -1 + 5\sin\theta \end{cases} \quad (\theta \in \mathbb{R})$$

est une représentation paramétrique de (C).

12.3. Partie C

12.3.1. 12.3.1.1. L'ensemble de définition de f est

$$D_f =]-\infty, 0[\cup]0, +\infty[$$

12.3.1.2. Limites:

$$\lim_{x \to -\infty} f(x) = -\infty$$

$$\lim_{x \to 0^{-}} f(x) = -\infty$$

$$\lim_{x \to 0^+} f(x) = +\infty$$

$$\lim_{x \to +\infty} f(x) = +\infty$$

12.3.1.3. f(-1) = -1; f(1) = 3 et f'(-1) = f'(1) = 0

$$f(x) = ax + b + \frac{c}{x}$$

12.3.2.1. Montrons, en utilisant les résultats précédentes, que $f(x) = \frac{x^2 + x + 1}{x}$ Il suffit de déterminer les valeurs de a, b et c en utilisant

les résultats des lectures graphiques précédentes.

$$f(x) = ax + b + \frac{c}{x}$$

$$\Leftrightarrow f'(x) = a - \frac{c}{x^2}$$

$$\operatorname{Or} \begin{cases} f(-1) = -1 \\ f(1) = 3 \\ f'(1) = 0 \end{cases}$$

$$\Rightarrow \begin{cases} -a + b - c = -1 \\ a + b + c = 3 \\ a - c = 0 \end{cases}$$

$$\Rightarrow \begin{cases} -a + b - c = -1 \\ a + b + c = 3 \\ a = c \end{cases} (2)$$

(1) + (2) donne $2b = 2 \implies b = 1$ D'où

$$(2) \Rightarrow a+1+c=3$$

$$\Rightarrow a+c=2 \text{ or } a=c$$

$$\Rightarrow a+a=2$$

$$\Rightarrow a=1$$

Ainsi a = b = c = 1Et par conséquent

$$f(x) = x + 1 + \frac{1}{x}$$

$$\Leftrightarrow f(x) = \frac{x^2 + x + 1}{x} \quad \forall x \neq 0$$

12.3.2.2. Montrons que la droite d'équation y = x + 1est asymptote oblique à (C_f) .

$$f(x)-(x+1) = x+1+\frac{1}{x}-(x+1) = \frac{1}{x}$$

Donc

$$\lim_{x \to \pm \infty} \left[f(x) - (x+1) \right] = \lim_{x \to \pm \infty} \frac{1}{x} = 0$$

D'où la droite d'équation y = x+1 est asymptote oblique à (C_f) aussi bien en $+\infty$ qu'en $-\infty$.

12.3.2.3. Montrons que le point $\Omega(0,1)$ est centre de symétrie pour (C_f) .

Rappel: $\Omega(a,b)$ est centre de symétrie de la courbe d'une fonction f si et seulement si $\forall x$ tel que a-x et $a+x \in D_f$ on a f(a-x)+f(a+x)=2b.

Dans notre cas, $\forall x$ tel que $x \neq 0$.

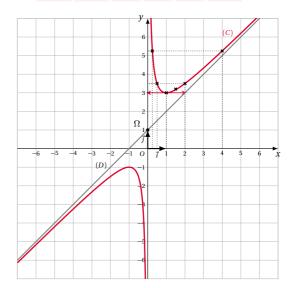
$$f(0-x)+f(0+x) = f(-x)+f(x)$$
$$-x+1+\frac{1}{-x}+x+1+\frac{1}{x}=2=2\times 1$$

D'où $\Omega(0,1)$ est centre de symétrie pour (C_f) .

12.3.2.4. Construisons (C_f) et (D) dans le même repère orthonormé $(O; \vec{i}, \vec{j})$

Tableau de valeurs particulières

х	0,25	0,5	1,5	2	4
f(x)	5,25	3,5	3,2	3,5	5,25



Solution - Probatoire 2016 1.2.5

Solution 13. (p. 5)

13.1. Déterminons l'arrondi d'ordre 2 la moyenne M de distance hebdomadaires parcourues par ces élèves

Distances x_i	[0;3[[3;5[[5;7[[7;11[Total
Centres c_i	1,5	4	6	9	
Effectifs n _i	25	23	32	10	90
$n_i c_i$	37,5	92	192	90	411,5

$$M = \frac{\sum_{i=1}^{n} n_i c_i}{\sum_{i=1}^{n} n_i} = \frac{411.5}{90} \approx 4.57$$

13.2. Le plus grand effectif est 32, qui correspond à la classe [5; 7]. La classe modale est donc [5; 7].

13.3. Tableau des effectifs cumulés croissants

Distances	[0;3[[3;5[[5;7[[7;11[
Effectifs	25	23	32	10
Effectifs cumulés croissants	25	48	80	90

13.4. Déterminons la médiane M_e par interpolation linéaire

L'effectif total est N = 90

$$\Rightarrow \frac{N}{2} = 45 \in [25;48[$$

Donc $M_e \in [3,5[$.

Et par interpolation linéaire on a

$$\begin{split} \frac{48 - \frac{N}{2}}{5 - M_e} &= \frac{48 - 25}{5 - 3} \\ \Rightarrow \frac{48 - 45}{5 - M_e} &= \frac{48 - 25}{2} \\ \Rightarrow 5 - M_e &= \frac{3 \times 2}{23} \\ \Rightarrow M_e &\approx 4,74 \end{split}$$

 $M_o \approx 4.74$

13.5. Nombre N_1 d'élèves qui parcourent moins de 5 km

 N_1 est l'effectif total des données [0;3] et [3;5] Donc $N_1 = 25 + 23 = 48$

D'où 48 élèves parcourent moins de 5 km par semaine 13.6. 13.6.1. Pour former un groupe, il suffit de choisir (sans tenir compte de l'ordre), 5 élèves parmi les 90. Le nombre de possibilité est donc C_{90}^5

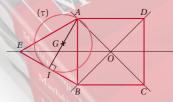
Qui correspond à la réponse c.

13.6.2. Pour former un groupe constitue de au moins deux filles et au moins 2 garçons un peut :

- soit choisir 2 filles parmi les 30 et 3 garçons parmi les 60;
- soit choisir 3 filles parmi les 30 et 2 garçons parmi les

Le nombre de possibilités est donc $C_{30}^2 C_{60}^3 + C_{30}^3 C_{60}^3$ Qui correspond à la réponse d.

Solution 14. (p. 5)



14.1. Déterminons les images par r de A, B, C, D et O $r(A) = D \operatorname{car} OA = OD \operatorname{et}$

$$\operatorname{mes}(\vec{OA}, \vec{OD}) = -\frac{\pi}{2}$$

$$r(B) = A$$
 $r(C) = B$ $r(D) = C$ $r(O) = O$

14.2. Construction de E: voir figure

14.3. $G = bar\{(A,2); (B,1), (E,1)\}, I \text{ milieu de } [BE]$

14.3.1. Montrons que G est le milieu de AI

On a $G = bar\{(A,2);(B,1),(E,1)\}$ et I milieu de $[BE] \Rightarrow I = bar\{(B,1);(E,1)\}$

D'après le barycentre partiel on a donc

$$G = bar\{(A,2); (E,2)\}$$
$$= bar\{(A,1); (E,1)\}$$

Ainsi G est le milieu de [AE]

14.3.2. Montrons que $AI^2 = \frac{27}{4}$ Comme AEB est un triangle équilatéral I est le projeté orthogonal de A

$$sur(EB)$$
 et $AB = AE = EB = 2EI = 3$

En appliquant le théorème de Pythagore au triangle AEI on obtient $AI^2 = AE^2 - EI^2$ or AE = 3 et $EI = \frac{3}{2}$

$$\Rightarrow AI^2 = 9 - \frac{9}{4} = 9\left(1 - \frac{1}{4}\right) = \frac{9 \times 3}{4} = \frac{27}{4}$$

D'où
$$AI^2 = \frac{27}{4}$$

14.3.3. (
$$\mathscr{C}$$
): $\left\{ M/AM^2 + IM^2 = \frac{27}{4} \right\}$

14.3.3.1. Montrons que pour tout point M du plan, on

a
$$AM^2 + IM^2 = 2GM^2 + \frac{AI^2}{2}$$

Soit *M* un point quelconque du plan

$$AM^{2} + IM^{2} = A\vec{M}^{2} + I\vec{M}^{2}$$

$$= (A\vec{G} + G\vec{M})^{2} + (I\vec{G} + G\vec{M})^{2}$$

$$= A\vec{G}^{2} + G\vec{M}^{2} + 2A\vec{G} \cdot G\vec{M}$$

$$+ I\vec{G}^{2} + G\vec{M}^{2} + 2I\vec{G} \cdot G\vec{M}$$

$$= 2G\vec{M}^{2} + A\vec{G}^{2} + I\vec{G}^{2} + 2G\vec{M}(A\vec{G} + I\vec{G})$$

Or nous avons obtenu à la question (14.3.1.) que G est le milieu de [AI]

Donc
$$\vec{AG} + \vec{IG} = \vec{O}$$
 et $\vec{AG} = \vec{IG} = \frac{AI}{2}$
D'où

$$A\vec{M}^2 + I\vec{M}^2 = 2GM^2 + \left(\frac{AI}{2}\right)^2 + \left(\frac{AI}{2}$$

14.3.3.2. Déterminons et construisons l'ensemble (\mathscr{C}) Soit M un point du plan

$$M \in \mathcal{C} \Leftrightarrow AM^2 + IM^2 = \frac{27}{4}$$

$$\Leftrightarrow 2GM^2 + \frac{AI^2}{2} = \frac{27}{4} \text{ or } AI^2 = \frac{27}{4}$$

$$\Leftrightarrow 2GM^2 = \frac{27}{4} - \frac{1}{2} \times \frac{27}{4} = \frac{27}{8}$$

$$\Leftrightarrow GM^2 = \frac{27}{16} \Leftrightarrow GM = \sqrt{\frac{27}{16}} = \frac{3\sqrt{3}}{4}$$

Aussi comme
$$AI^2 = \frac{27}{4}$$
 alors $AI = \frac{3\sqrt{3}}{2}$

$$\Rightarrow GA = \frac{AI}{2} = \frac{3\sqrt{3}}{4}$$

$$\Rightarrow GM = GA$$

Donc (\mathscr{C}) est le cercle de centre G et de rayon GA. Il s'agit aussi du cercle de diamètre [AI].

Solution 15. (p. 5)

15.1. Partie A

15.1.1. 15.1.1.1. Par lecture graphique, on a

- $D_f =]-\infty; 1[\cup]1; +\infty[(f \text{ n'est par défini en 1})]$
- $\lim_{x \to -\infty} f(x) = -\infty$
- $\prod_{x \to 1^{-}}^{\infty} f(x) = -\infty$
- $\lim_{x \to 1} f(x) = +\infty$

15.1.1.2. Par lecture graphique f est:

- naissante sur $]-\infty;-1]$ et sur $[3;+\infty[$
- décroissante sur [−1; 1[et sur]1; 3]

15.1.1.3. Par lecture graphique l'ensemble solution de l'inéquation :

15.1.1.3.1. f(x) < 0 est $S =]-\infty; 1[$

Car la courbe de f est en dessous de l'axe des abscisses pour $x \in]-\infty;1[$

15.1.1.3.2. f(x) > 0 est $S =]1; +\infty[$

15.1.1.4. Par lecture graphique on a:

- f(-1) = -1
- f(0) = -2
- f'(-1) = 0 (car (τ) admet en $x_0 = -1$ un tangente horizontale).

15.1.1.5. Tableau de variation de f

15.1.2.
$$f(x) = ax + b + \frac{c}{x-1}$$

15.1.2.1. En utilisant la question (15.1.1.4.), montrons que les réels a, b et c vérifient le système

$$\begin{cases} 2a - 2b + c = 2 \\ b - c = -2 \\ 4a - c = 0 \end{cases}$$

$$f(x) = ax + b + \frac{c}{x - 1}$$

$$\Rightarrow f'(x) = a - \frac{c}{(x - 1)^2}$$

Or d'après (15.1.1.4.) f(-1) = -1, f(0) = -2, f'(-1) = 0

$$\Rightarrow \begin{cases} -a+b+\frac{c}{-1-1} = -1 \\ 0 \times a+b+\frac{c}{0-1} = -2 \\ a-\frac{c}{(-1-1)^2} = 0 \end{cases}$$

$$\Rightarrow \begin{cases} -a+b-\frac{c}{2} = -1 \\ b-c = -2 \Rightarrow \\ a-\frac{c}{4} = 0 \end{cases} \begin{cases} 2a-2b+c=2 \\ b-c = -2 \\ 4a-c = 0 \end{cases}$$

15.1.2.2. Parmi les triplets donnés, le seul qui vérifie le système établit précédemment est (1,2,4)

Donc la réponse est c.

15.2. Partie B

15.2.1. $w_n = b(c)^n + bn + a$, $u_n = b(c)^n$, $v_n = bn + a$ Comme a = 1, b = 2, c = 4 alors

$$w_n = 2(4)^n + 2n + 1$$

 $u_n = 2(4)^n$
et $v_n = 2n + 1$.

15.2.1.1. Montrons que (u_n) est une suite géométrique et (v_n) une suite arithmétique.

 $\forall n \in \mathbb{N}$,

$$\frac{u_{n+1}}{u_n} = \frac{2(4)^{n+1}}{2(4)^n} = \frac{2 \times 4 \times (4)^n}{2 \times (4)^n} = 4$$

Donc (u_n) est une suite géométrique de raison 4.

 $\forall n \in \mathbb{N}.$

$$v_{n+1} - v_n = 2(n+1) + 1 - 2n - 1$$

= $2n + 2 + 1 - 2n - 1$
= 2

Donc (v_n) est une suite arithmétique de raison 2. 15.2.1.2. Montrons que pour tout entier naturel n, $w_{n+1} = 2^{2n+1} + 2n + 1$ $\forall n \in \mathbb{N}$,

$$w_n = 2(4)^n + 2n + 1 = 2(2^2)^n + 2n + 1$$

$$= 2^1 \times 2^{2n} + 2n + 1, \operatorname{car}(a^m)^n = a^{mn}$$

$$= 2^{1+2n} + 2n + 1, \operatorname{car} a^m \times a^n = a^{m+n}$$

$$= 2^{2n+1} + 2n + 1$$

D'où $w_n = 2^{2n+1} + 2n + 1$ pour tout entier naturel n **15.2.1.3. 15.2.1.3.1.** Exprimons S_n puis S'_n en fonction de n. S_n :

On sait que la somme de n+1 premiers termes d'une suite géométrique (u_n) , de premier terme u_0 et de raison

q est donne par
$$u_0 \times \frac{1-q^{n+1}}{1-q}$$

Pour notre cas (u_n) est une suite géométrique de raison q=4 et de premier terme $u_0=2(4)^0=2$

Donc
$$S_n = u_0 + ... + u_n = 2 \times \frac{1 - (4)^{n+1}}{1 - 4}$$

= $\frac{2}{3} (4^{n+1} - 1)$

 S'_n : On sait que la somme des n+1 premiers termes d'une

1

suite arithmétique (u_n) de raison r est donné par la formule

$$\frac{(u_0+u_n)(n+1)}{2} \text{ où } u_n=u_0+n\, r,\, \forall\, n\in\mathbb{N}$$

Pour notre cas (v_n) est de raison r = 2 et premier terme $v_0 = 2 \times 0 + 1 = 1$

Donc

$$S'_n = v_0 + \dots + v_n$$

$$= \frac{(n+1)(v_0 + v_n)}{2}$$

$$= \frac{(n+1)(1+2n+1)}{2}$$

$$= \frac{(n+1)(2n+2)}{2}$$

$$= \frac{2(n+1)(n+1)}{2}$$

$$= (n+1)^2$$

15.2.1.3.2. Déduisons en T_n en fonction de n

$$T_n = w_0 + w_1 + \dots + w_n$$

$$= (u_0 + v_0) + (u_1 + v_1) + \dots + (u_n + v_n)$$

$$\operatorname{car} \forall n \in \mathbb{N}, w_n = u_n + v_n$$

$$= (u_0 + u_1 + \dots + u_n)$$

$$+ (v_0 + v_1 + \dots + v_n)$$

$$= S_n + S'_n$$

$$= \frac{2}{3} (4^{n+1} - 1) + (n+1)^2$$

15.2.2. 15.2.2.1. Vérifions que *a* est une solution de

$$2x^2-(2-\sqrt{2})x-\sqrt{2}=0$$

on sait que a = 1.

Et on a

$$2 \times 1^{2} - (2 - \sqrt{2}) \times 1 - \sqrt{2}$$
$$= 2 - 2 + \sqrt{2} - \sqrt{2} = 0$$

D'où a = 1 est bien solution de cette équation. 15.2.2.2. Montrons que l'autre solution de cette équa-

On sait que si l'équation $ax^2 + bx + c = 0$ admet deux solution x_1 et x_2

alors
$$x_1 + x_2 = -\frac{b}{a}$$
 et $x_1 x_2 = \frac{c}{a}$.

Or à la question précédente nous avons montré que $x_1 = 1$ était une solution de l'équation

$$2x^2 - (2 - \sqrt{2})x - \sqrt{2} = 0$$

Soit x_2 , l'autre solution.

Alors
$$x_1 + x_2 = \frac{2 - \sqrt{2}}{2}$$

$$\Rightarrow x_2 = 1 - \frac{\sqrt{2}}{2} - x_1 \text{ or } x_1 = 1$$
$$\Rightarrow x_2 = 1 - \frac{\sqrt{2}}{2} - 1 = -\frac{\sqrt{2}}{2}$$

Donc l'autre solution est $-\frac{\sqrt{2}}{2}$.

Déduisons la résolution dans $]-\pi;\pi]$ de l'équation $2\sin^2 x - (2-\sqrt{2})\sin x - \sqrt{2} = 0$

$$2\sin^2 x - (2 - \sqrt{2})\sin x - \sqrt{2} = 0 \Leftrightarrow \sin x = 1$$
ou $\sin x = -\frac{\sqrt{2}}{2}$ (d'après ce qui précède)
$$\Leftrightarrow \sin x = \sin \frac{\pi}{2} \text{ ou } \sin x = \sin \left(-\frac{\pi}{4}\right)$$

$$\Leftrightarrow x = \frac{\pi}{2} + 2k\pi \text{ ou } x = \pi - \frac{\pi}{2} + 2k\pi$$
ou $x = -\frac{\pi}{4} + 2k\pi$
ou $x = \pi - \left(-\frac{\pi}{4}\right) + 2k\pi$

$$(k \in \mathbb{U})$$

$$\Leftrightarrow x = \frac{\pi}{2} + 2k\pi \text{ ou } x = -\frac{\pi}{4} + 2k\pi$$
ou $x = \frac{5\pi}{4} + 2k\pi$
ou $x = \frac{5\pi}{4} + 2k\pi$ ($k \in \mathbb{U}$)

Il ne reste plus qu'à chercher la solution appartenant à $]-\pi;\pi]$

Pour
$$x = \frac{\pi}{2} + 2k\pi (k \in \mathbb{U})$$

$$x \in]-\pi;\pi] \Leftrightarrow -\pi < \frac{\pi}{2} + 2k\pi \le \pi$$

$$\Leftrightarrow -\frac{3\pi}{2} < 2k\pi \le \frac{\pi}{2}$$

$$\Leftrightarrow -\frac{3}{4} < k \le \frac{1}{2} (k \in \mathbb{U})$$

$$\Leftrightarrow k = 0$$

D'où
$$x = \frac{\pi}{2}$$

D'où $x=\frac{\pi}{2}$ Pour $x=-\frac{\pi}{4}+2k\pi$, en résolvant de la même manière

$$k = 0 \text{ et } x = -\frac{\pi}{4}$$

Pour $x = \frac{5\pi}{4} + 2k\pi$, en résolvant on obtient k = -1 et

D'où l'ensemble solution de l'équation dans $]-\pi;\pi]$ est

$$S = \left\{ -\frac{3\pi}{4}; -\frac{\pi}{4}; \frac{\pi}{2} \right\}$$

Solution - Probatoire 2017

La solution de ce sujet peut être gratuitement téléchargée sur:

www.simo.education

